Definitions: Similarity Analysis of Counterfactuals

Philosophical Logic 2025/2026

1 Language

Definition 1.1 (Language). Let Var be a non-empty set of propositional atoms p, q, r, ... The language $\mathcal{L}(\leadsto)$ is generated by

$$\varphi ::= p \mid \neg \varphi \mid (\varphi \land \varphi) \mid (\varphi \lor \varphi) \mid (\varphi \supset \varphi) \mid (\varphi \leadsto \varphi)$$

where $p \in Var$

Definition 1.2 (Proposition expressed by a formula). Let M be a model with set of worlds W For each $\varphi \in \mathcal{L}(\leadsto)$, the proposition expressed by φ in M is

$$\llbracket \varphi \rrbracket_M := \{ w \in W : M, w \models \varphi \}$$

When M is fixed, we write $\llbracket \varphi \rrbracket$

2 Similarity Frames and Models

Definition 2.1 (Similarity frame). A similarity frame is a pair

$$F = \langle W, \prec \rangle$$

such that

- 1. $W \neq \emptyset$ is a set of possible worlds.
- 2. for each $w \in W$ there is a set $W_w \subseteq W$ and a binary relation \prec_w on W_w satisfying
 - (a) irreflexivity: for all $u \in W_w$, $u \not\prec_w u$
 - (b) transitivity: for all $u, v, z \in W_w$, if $u \prec_w v$ and $v \prec_w z$, then $u \prec_w z$

For $u, v \in W_w$, the intended reading of $u \prec_w v$ is that u is more similar to w than v is

Definition 2.2 (Field of a world). Let $F = \langle W, \prec \rangle$ be a similarity frame. For each $w \in W$, the field W_w of w is the domain on which \prec_w is defined. Equivalently

$$W_w = \{u \in W : \exists v \in W (u \prec_w v \text{ or } v \prec_w u)\}$$

Definition 2.3 (Reflexive closure of \prec_w). Let $F = \langle W, \prec \rangle$ be a similarity frame and $w \in W$. The reflexive closure \leq_w of \prec_w on W_w is defined by

$$u \leq_w v$$
 iff $(u \prec_w v)$ or $(u = v)$

for all $u, v \in W_w$

Definition 2.4 (Similarity model). A similarity model is a triple

$$M = \langle W, \prec, V \rangle$$

where $\langle W, \prec \rangle$ is a similarity frame and

$$V: \mathsf{Var} \times W \to \{0,1\}$$

is a valuation assigning a classical truth value to each pair (p, w) with $p \in Var$ and $w \in W$.

3 Truth and Logical Consequence

Definition 3.1 (Truth at a world). Let $M = \langle W, \prec, V \rangle$ be a similarity model The satisfaction relation $M, w \models \varphi \ (\varphi \text{ is true at } w \text{ in } M) \text{ is defined inductively for } w \in W$ by

$$M, w \models p \quad iff \quad V(p, w) = 1$$

$$M, w \models \neg \varphi \quad iff \quad M, w \not\models \varphi$$

$$M, w \models \varphi \land \psi \quad iff \quad M, w \models \varphi \text{ and } M, w \models \psi$$

$$M, w \models \varphi \lor \psi \quad iff \quad M, w \models \varphi \text{ or } M, w \models \psi$$

$$M, w \models \varphi \supset \psi \quad iff \quad M, w \not\models \varphi \text{ or } M, w \models \psi$$

The clause for $\varphi \leadsto \psi$ is given in definitions 4.1 and 4.4.

Definition 3.2 (Logical consequence). Let $\Gamma \cup \{\varphi\} \subseteq \mathcal{L}(\leadsto)$ We write

$$\Gamma \models \varphi$$

iff for every similarity model M and every world w in M the following holds:

If
$$M, w \models \gamma$$
 for all $\gamma \in \Gamma$, then $M, w \models \varphi$

4 Counterfactual Semantics

Definition 4.1 (General similarity clause for counterfactuals). *Let* $M = \langle W, \prec, V \rangle$ *be a similarity model,* $w \in W$, *and* $\varphi, \psi \in \mathcal{L}(\leadsto)$. *Then*

$$M, w \models \varphi \leadsto \psi \iff \forall u \in W_w \cap \llbracket \varphi \rrbracket \ \exists u' \in \llbracket \varphi \rrbracket \ such \ that$$

$$(i) \quad u' \preceq_w u$$

$$(ii) \quad \forall u'' \in \llbracket \varphi \rrbracket \ (u'' \preceq_w u' \Rightarrow M, u'' \models \psi)$$

Definition 4.2 (Limit Assumption). Let $F = \langle W, \prec \rangle$ be a similarity frame and $w \in W$. The Limit Assumption holds at w iff the relation \prec_w on W_w is well founded, in the sense that either of the following equivalent conditions holds

- 1. there is no infinite sequence $(u_1, u_2, u_3, ...)$ of worlds in W_w with $u_{n+1} \prec_w u_n$ for all $n \ge 1$
- 2. every non-empty subset $X \subseteq W_w$ has $a \prec_w$ -minimal element, that is, some $u \in X$ such that there is no $v \in X$ with $v \prec_w u$

The frame F satisfies the Limit Assumption iff it holds at every $w \in W$.

Definition 4.3 (Minimal φ -worlds). Let $M = \langle W, \prec, V \rangle$ be a similarity model, $w \in W$, and $\varphi \in \mathcal{L}(\leadsto)$ The set of \prec_w -minimal φ -worlds at w is

$$\operatorname{Min}_{w}(\varphi) := \{ u \in W_{w} \cap \llbracket \varphi \rrbracket : \neg \exists v \in W_{w} \cap \llbracket \varphi \rrbracket (v \prec_{w} u) \}$$

Elements of $Min_w(\varphi)$ are the closest φ -worlds to w (if any)

Definition 4.4 (Closest-worlds clause under the Limit Assumption). Let $M = \langle W, \prec, V \rangle$ be a similarity model and $w \in W$ such that the Limit Assumption holds at w For $\varphi, \psi \in \mathcal{L}(\leadsto)$ we have

$$M, w \models \varphi \leadsto \psi \iff \forall u \in \operatorname{Min}_{w}(\varphi) M, u \models \psi$$

5 Frame Conditions and Corresponding Principles

We can match simple structural constraints on the similarity ordering \prec_w with characteristic valid schemas for the counterfactual connective \rightsquigarrow .

Weak Centering (WC)	$\forall w \forall v (v \neq w \to \neg (v \prec_w w))$
(Modus Ponens for \leadsto)	$((\varphi \leadsto \psi) \land \varphi) \supset \psi$
Strong Centering (SC)	$\forall w \forall v (v \neq w \to w \prec_w v)$
(Conjunctive Sufficiency)	$(\varphi \wedge \psi) \supset (\varphi \leadsto \psi)$
Connectedness + Limit	$\forall w \forall u \forall v (u \neq v \rightarrow (u \prec_w v \lor v \prec_w u))$
(CEM)	and, in addition, well-foundedness of each \prec_w $(\varphi \leadsto \psi) \lor (\varphi \leadsto \neg \psi)$
Almost-Connectedness (AC)	$\forall w \forall u \forall v \forall z (u \prec_w z \to (u \prec_w v \lor v \prec_w z))$
(ASP)	$(\neg(\varphi \leadsto \neg \psi) \land (\varphi \leadsto \chi)) \supset ((\varphi \land \psi) \leadsto \chi)$

6 Axiomatic System P

Definition 6.1 (Axioms of P). Let φ , ψ , χ range over $\mathcal{L}(\leadsto)$. The proof system P has as axioms all instances of the following schemes:

TAUT Every instance of a classical propositional tautology in the language $\mathcal{L}(\leadsto)$ (with \leadsto treated as an additional connective).

CI
$$\varphi \leadsto \varphi$$
.

$$CC (\varphi \leadsto \psi) \land (\varphi \leadsto \chi) \supset (\varphi \leadsto (\psi \land \chi)).$$

$$CW (\varphi \leadsto \psi) \supset (\varphi \leadsto (\psi \lor \chi)).$$

$$ASC (\varphi \leadsto \psi) \land (\varphi \leadsto \chi) \supset ((\varphi \land \psi) \leadsto \chi).$$

AD
$$(\varphi \leadsto \chi) \land (\psi \leadsto \chi) \supset ((\varphi \lor \psi) \leadsto \chi).$$

Definition 6.2 (Inference rules of P). The rules of inference for P are the following:

MP (Modus Ponens) From φ and $\varphi \supset \psi$, infer ψ .

REA (Replacement of equivalents in antecedent)

From
$$\varphi \subset \psi$$
, *infer* $(\varphi \leadsto \chi) \subset (\psi \leadsto \chi)$

REC (Replacement of equivalents in consequent)

From
$$\varphi \subset \psi$$
, *infer* $(\chi \leadsto \varphi) \subset (\chi \leadsto \psi)$

Definition 6.3 (Derivability in P). Let $\Gamma \cup \{\varphi\} \subseteq \mathcal{L}(\leadsto)$. We write

$$\Gamma \vdash_{\mathbf{P}} \varphi$$

iff there exists a finite sequence $\varphi_1, ..., \varphi_n$ of formulas with $\varphi_n = \varphi$ such that for each $i \le n$ one of the following holds:

- 1. φ_i is an instance of one of the axioms in definition 6.1;
- 2. $\varphi_i \in \Gamma$;
- 3. φ_i is obtained from earlier members of the sequence by one of the rules in definition 6.2.

When $\Gamma = \emptyset$ we simply write $\vdash_{\mathbf{P}} \varphi$ and call φ a theorem of \mathbf{P} .

Theorem 6.1 (Soundness and completeness of P). *For all* $\Gamma \cup \{\varphi\} \subseteq \mathcal{L}(\leadsto)$,

$$\Gamma \vdash_{\mathbf{P}} \varphi \iff \Gamma \models \varphi,$$

where \models is the semantic consequence relation of definition 3.2 evaluated on similarity models $\langle W, \prec, V \rangle$ with the counterfactual clauses of definition 4.1 (equivalently, under the Limit Assumption, of definition 4.4).